
C

 DECISION-MAKING
IN COSMONAUTICA

osmonautica is the second game
of the small indie studio Chasing
Carrots KG in Stuttgart, Germany.
The game combines »Sims«-like
management of the crew mem-
bers in the player’s spaceship
with trading and space fights.

Instead of getting direct orders from the player,
the NPC crew members choose their actions on
their own within certain limits. The AI system
must therefore make these decisions. Since the
crew members’ behaviors are a main part of
the game and crucial for the player’s success,
the decision-making system must support
quite complex behaviors. In short, it is meant
to choose the work which the crew members
do or how they satisfy their needs. Then, the
system should control how they do it to ensure
that everything looks natural.

Cosmonautica was in an early stage of
development when the work on the decision-
making system started. Some behavior related
systems, like the need system for example,
did already exist; but the behaviors were just
placeholders. Therefore, the new decision-
making system had to fit between these
systems. The decision-making core system is

meant to be a part of the code base Chasing
Carrots will use for future games.

Behavior Trees
State machines are very simple but can hardly
be re-used. Fuzzy logic or Markov systems as
extension for state machines or stand-alone
are not necessary for Cosmonautica because
real probabilistic behaviors and multiple
states are not desired. Goal-oriented action
planning is a great technique for action plan-
ning, which is not required. But utility func-
tions, a part of the goal-oriented behaviors,
made their way into Cosmonautica. Behavior
trees combine simplicity with good behaviors
and awesome flexibility.

Tree Structure
Behavior trees are directed, acyclic graphs
made of nodes and edges. To be more exact,
behavior trees are rooted and directed trees.
Nodes need to know only their child nodes,
which leads to a hierarchy. All nodes share the
same interface, making it easy to exchange
them, which in turn is the reason for the flexi-
bility of the behavior trees. A behavior tree
can be started very simple as a placeholder

Philipp was a programmer at Chasing Carrots while writing his
bachelor‘s thesis »Decision-Making in a Group of Artificial Intelli-
gences in Different Simulated Environments«. He worked on the pro-
totype of a racing game before moving on to work on »Cosmonautica«.
More info on the game at www.cosmo-nautica.com.

The bachelor’s thesis and the behavior tree core system:
www.pplusplus.lima-city.de/bachelorsthesis.html

Philipp Erler
just finished his studies of
Software Engineering at the
University of Applied Sciences
in Esslingen.

64

AI Case Study
Making Games 04/2014

Achieving a natural behavior of NPCs is a great challenge but also necessary for immersion.
Philipp Erler explains the artificial intelligence in Cosmonautica.

and can be easily extended later on with
working states in between.

Node States
Each node sets its own state every time it is
evaluated, then it returns this state to its par-
ent node. Alex J. Champandard says in his talk
»Understanding the Second Generation of Be-
havior Trees« that he tried many possible state
combinations but the following are the best:
¾¾ Invalid – This state is set in the constructor
of the base node class. Therefore, the invalid
state indicates that the node’s evaluation
method has never been called. It can also be
set to show that an exception occurred.
¾¾ Successful – This state is set when a node
evaluated successfully. For example, a node
that teleports the player character to an-
other place could use this state to show that
the player has arrived.
¾¾ Failure – Failure is the opposite. Using the
previous example, this state could be set if
the teleport fails because the player lacks
the resources.

¾¾ Running – The running state is a bit special
as it may persist through several evalua-
tions of the node. In the teleport example,
this state would show that the teleport
takes time to open a portal. Once the portal
is opened, the teleport node would set its
state to successful.
¾¾ Aborted – Any node may cause the teleport
node to be reset. Then, the aborted state is
used. This could happen when the character
received damage while opening the portal.

What should Calvin (lower left-hand corner) do? Moreover, where? Should he work or satisfy his needs? How long and how often?
These are difficult questions for humans and even more so for a computer.

State Machines Fuzzy Logic /
Markov Systems

Goal-Oriented
Behavior

Rule-Based
 Systems

Behavior Trees

Simplicity + - 0 - +
Separation of Game Design
and Programming

+ 0 0 + +

Flexibility - 0 0 0 +
Behavior Quality - 0 0 + +
Efficiency + - - + 0
Conclusion Very simple Probabilistic Great for planning Limits not

reached yet
High flexibility

This overview compares different decision-making techniques and their characteristics. Note that behavior trees might not be the best choice for your own decision-making system. As Millington and Funge say in
»Artificial Intelligence for Games«, it can be cumbersome to achieve some behaviors with behavior trees. This applies especially to state-like behaviors.

Cosmonautica combines »Sims«-like crew
management with trading and space fights.

65

There are two events reacting on the states of
a node. The »on initialize«-event is triggered
before the evaluation but only if the node’s
state is not running. The »on terminate«-event
is triggered after the evaluation but before
returning its state, only if it is not running.
Both events may execute custom code. In the
teleport example, the on-initialize-event could
start an animation, the node evaluation would
check if the teleport preparation is finished,
and the on-terminate-event would set the
caster’s new position and stop the animation.

During the development of Cosmonautica, no
situation occurred that required different states.
In fact, the whole behavior tree system applied
by Chasing Carrots is based heavily on the be-
havior tree starter kit by AiGameDev.com.

Basic Node Types
Millington and Funge suggest the following
behavior tree node types:
¾¾ Leaf Nodes – They are at the end of the be-
havior tree and have no child nodes.
¾¾ Action – These nodes alter the state of the
game or a game object.
¾¾ Condition – They check a fact in the game.

¾¾ Composite Nodes – These nodes can have
multiple child nodes. They base their own
evaluation on the return values of their
children.
¾¾ Sequence – These nodes try to evaluate
their child nodes until one returns some-
thing other than successful.
¾¾ Selector – They try to evaluate their child
nodes until one returns other than failure.

¾¾ Parallel – These nodes try to evaluate their
child nodes until a specific number of suc-
cessful or failure is returned. In contrast to
the other composite nodes, parallel nodes
do not commence their evaluation at the
last running node. Instead, they start
always with the first child.

¾¾ Decorators – These nodes have only one
child node. They change the way this child is
evaluated. Many different types of decora-
tors are imaginable. For example, they can
change the child‘s return value or act as a
breakpoint.

Behavior Tree Evaluation
Behavior trees are evaluated from the root
every time the tree is updated, which can hap-
pen with a significantly lower frequency than
the normal frame rate. In Cosmonautica, the
update of the crew members’ behavior trees is
done every ten in-game minutes, which equals
about two real seconds. This relieves the CPU
quite a lot but leads to a more difficult optical
representation of the crew members.

Each node of the behavior tree tries to run
through all of its child nodes. The behavior
tree can be designed in such a way that the
root node’s result indicates if the tree found a
fitting behavior for the situation of the object
it currently controls.

Implementation
Once the behavior tree has been assembled,
there are usually no more changes as long as
the game runs. Therefore, a vector of pointers
to the child nodes is the best way to achieve
the special tree structure. The only exceptions
are decorators, which only have a single child
node and leaf nodes without any children.

Whether the crew member should work
is controlled inside the crew member class
through his assigned tasks and the game
time. This class has a small internal state ma-
chine for the walking and doing state.The most important node types of the behavior tree notation used by Millington and Funge.

The crew members’ behavior
is a huge part of the game, so

the decision-making has to feel
natural to the player.

AI Case Study
Making Games 04/2014

66

Finding the Best Activity
through Utility Functions

There are several reasons why the actual
search for the best activity is not modeled into
the behavior tree but is done within action
nodes. The first reason is that the activities
in Cosmonautica are added by placing rooms
and they are removed when the providing
room is sold or destroyed. To model this into
the behaviour tree would require a regular
modification of the tree while the game runs,
which might have nasty side effects. If all ap-
proximately hundred rooms of a big ship were
placed, the behavior tree would then grow by
at least each two hundred tasks and activities
plus many management nodes. This would be
simply too much to keep a good performance.
Another reason why the activity search is not
modeled in the behavior tree is that not all
possible activities are already known and the
activities are planned to be changed by mods.
Therefore, maintaining the behavior tree will
be almost impossible. With the approach of
putting the searches into action nodes, only
utility functions have to be added for every
new type of activity or task.

In order to find the current need, all needs
of a crew member are considered beginning
with the most urgent. A need can only be
the current need if an activity exists, which
can satisfy this need. The search for the best
activity has the same conditions as the search
for the current need. Therefore, both searches

are pulled together to decrease the calculation
time. To find the best activity, all activities
lowering the current need’s urgency are
looked at. Each of these activities gets its util-
ity value calculated. The calculation itself is
done with the utility-system technique from
the category of the goal-oriented behavior.

All node classes are derived from the abstract base node. This class manages that the »initialize« and »terminate« events are triggered, calls the evaluation method, sets its result as the current node state and
returns it to the caller. The »Composite« class manages the vector of its child nodes. The »SpecialAction« class enables custom »initialize« and »terminate« events and provides special member variables.

Example: Evaluation of a Behavior Tree
The parallel root node runs its first child, a
selector, which looks for a reason why the
gun should be reloaded. This node looks for a
»successful« child node and returns success-
ful if one is found. Now, the root node runs its
second child, a sequence node, which checks

if the player has reserve ammo. If this check
is successful, the sequence node starts the
reloading. The parallel node here has the poli-
cies »all for successful« and »one for failure«,
which means that its second child is not
evaluated if the first child returns »failure«.

67

In the case of the crew member activities, the
utility is calculated out of this data:
¾¾ The distance between the crew member and
the possible activity
¾¾ The effect of the activity on the current need
as well as the effect on other needs
¾¾ The urgency value of the current need
¾¾ Whether the possible activity is the current
activity or the target activity
¾¾ The length of the queue in front of the
 activity
¾¾ How much dirt and damage the activity does
to the room of the activity

Each of these values has a factor assigned,
which defines how much the value influences
the overall utility of the activity. For example,
the distance between the crew member and
the possible activity is mostly meant to decide
between equal activities in different rooms.
Therefore, its factor is balanced to decide for
a less effective activity over a more effective
only if the latter is at the other end of the ship.
The walk speed or the required time to satisfy
a need by doing the activity are not considered
anymore because it led to a hard-to-control
nonlinear change of the utility value over time.

If several activities have exactly the same
utility value, one is chosen randomly by the
behavior tree to improve the diversity. In the
case of the fitness room, this makes the crew
members choose randomly between lifting
weights and running on the treadmill. Both
activities have the same effects on the charac-
ter, but are animated differently.

Prioritizing Tasks
Finding the best task is a little different. Tasks
have a priority value stored instead of a utility
value. This priority is calculated in a similar
way but it is independent from a certain crew
member. It depends only on the room provid-
ing the task. The priority values are calculated
differently for each task type. The priority of
the repair task for example is based on the

Bibliography
AiGameDev.com (Champandard, Alex J.)
»Behavior Tree Starter Kit«
https://github.com/aigamedev/btsk
»Understanding the Second-Generation of Behavior Trees –
#AltDevConf«
http://aigamedev.com/insider/tutorial/second-generation-bt/

Millington, Ian and Funge, John
»Artificial Intelligence for Games, 2nd Edition«
Boca Raton: CRC Press, 2009.

damage of the providing room and its impor-
tance. This importance value causes crucial
rooms like the engine room to be repaired
more often than e.g. cargo rooms. Other tasks,
such as the »man turret« tasks, have simply the
maximum priority value of one but only if the
ship is in a space fight. However, each task type
needs a separate priority calculation.

Space Station Activities
The search for an activity on a space station

is another case. Crew members find their
current need just like on the ship by choosing
the most urgent need which can be satisfied.
Because space stations have activities for all
needs, the current need is simply the most
urgent one. Afterwards, crew members choose
a random activity, which satisfies the current
need. Therefore, only the type of the activity
and the need’s urgency are considered for the
space station activities. Choosing the activi-
ties randomly improves the diversity of the
behaviors a lot. The behaviors and decisions
on the space stations can be much simpler
because all the information the players get
about it is a short text in the GUI.

Utility Functions
Our experience shows that the utility values

themselves are not important at all. Only their
relation to each other is relevant for ordering
the activities. Utility systems usually need to
compare all activities with every need what
leads to »O(needs*activities)« in time. By
choosing the most urgent need before search-
ing an activity, the complexity is decreased to
»O(needs+activities)«.

Conclusion
The AI system makes sure that the crew mem-
bers work or satisfy their needs when it makes
sense. The crew members also choose the room
for these activities with intelligence. They wait
in a queue for a reasonable time and they try to
do their assigned tasks as good as they can.

The AI system makes sure that
the crew members work or

satisfy their needs when it makes
sense. The crew members also

choose the room for these activi-
ties with some intelligence.

AI Case Study
Making Games 04/2014

68

The behavior trees are up and running in Cos-
monautica and they are controlling the crew
members. The utility functions have proven
to be useful for situations where behavior
trees would have become too big, for example
the search for an activity.
Behavior trees have shown these advantages:
¾¾ The flexibility is very high as shown through
the usage of behavior trees for the AI ships
in space fights, which was not planned at
the beginning.
¾¾ The maintaining of existing behavior trees
is fast and easy even without a graphical
modeling tool.
¾¾ The code of the BT nodes can easily be re-
used as well as parts of the behavior trees.
¾¾ The quality of the behaviors is high enough
to support everything we need.

Nothing is perfect. Behavior trees are no excep-
tion and showed these disadvantages:
¾¾ The distribution of complexity, especially
between the behavior tree itself and its
action nodes’ code is tricky. It can be useful
to combine or split behavior trees. Putting
too much complexity into the action nodes
makes the behavior tree harder to under-
stand and decreases its re-usability. Usually,
the entire complexity cannot be modeled
into the behavior tree and trying it will
result in a gigantic and slow behavior tree.
¾¾ Splitting up similar things, like checking
all activities and then choosing one, might
be required to re-use nodes but causes code
duplication and inefficiency.
¾¾ Debugging a behavior tree with the usual
tools is difficult, mostly because of the use-
less call-stack. It is very helpful to see every
node’s state of the entire behavior tree with
one glance. Therefore, a debug print or an
external tool is recommended.

We gained valuable experiences through Cos-
monautica. We learned that utility functions
are great as action nodes where a normal
node structure is not applicable. We also came
to understand how powerful behavior trees
are. On the other hand, we noticed that more
and more advanced behaviors can also harm
the game. Crew members in Cosmonautica
for example do not avoid each other anymore
during activities. Instead, they wait in a queue
in front of the activity giving the player a
chance to see the bottlenecks in the ship. And
we learned that state-like behaviors in behav-
ior trees usually require a small state machine
controlled by action nodes. This decreases the
complexity of these state machines to the ab-
solute minimum and therefore increases their
re-usability. But it can also make the entire
behavior tree harder to understand. However,
this is still much better than just a single big
state machine. Philipp Erler

The Crew members’ Behavior Tree
The crew members’ behavior tree consists of several parts:
1. Update the morale and all needs if the crew member is alive.
2. Find the best activity for the current environment.
3. Stick with the current need if it is urgent or was urgent since the current activity started.
4. Update walking or do the activity if the crew member has arrived. Then start walking to
 the new activity if the current activity has changed.

69

